KappArest™ is a proprietary blend of nutrients designed to downregulate inflammatory pathways, primarily through the inhibition of nuclear transcription factor-kappaB (NF-kappaB), a protein complex found in each cell that controls transcription of DNA, cytokine production, immune response and cell survival. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical (mediates inflammatory responses) and non-canonical (immune cell maturation) NF-kappaB pathways. Because of the interdependencies between the two, most view the NF-kappaB complex as a single signaling system.

Triggered by environmental stimuli, such as stress, radiation, injury, infection or oxidative stress, NF-kappaB becomes activated and acts as an intracellular ‘amplifier’ promoting the production of the direct mediators of inflammation such as cytokines, prostaglandins, leukotrienes, nitric oxide and free radicals. NF-kappaB can play a protective role, protecting from acute injurious situations. However, dysregulated NF-kappaB activity is often observed and may link to a failed feedback mechanism, which may result in defective communication between the cells and the host organism.

Understanding and regulating the NF-kappaB signaling pathway is critical to overall health.

While individual ingredients within combination nutritional formulas are often well-studied, rarely is the formula itself, comprised of varied vitamins, minerals, antioxidant enzymes, botanical extracts and carotenoids put through the rigor of research as a complex. The formula, KappArest™, however, is the exception to this rule, as there are two such studies that have evaluated its ability to decrease the inflammatory response.
One study evaluated the effects of **KappArest™** on cyclooxygenase (COX) enzyme activity, and also immune responsiveness of RAW264.7 macrophages, a key cell population involved in inflammation. **KappArest™** was found to selectively inhibit COX-2. It also decreased the lipopolysaccharide (LPS)-stimulated macrophages, as well as decreased the LPS-induced production of nitric oxide (NO) and interleukin-6 (IL-6), suggesting its protective effect in chronic inflammatory disorders.\(^4\)

A second study evaluated **KappArest™** for its immunomodulatory effects on dendritic cells (DCs) due to their preferential inhibition of COX-2 in an initial screening assay. **KappArest™** was found to be selective for COX-2 inhibition. It also inhibited the release of NO, IL-6 and TNF-α by LPS activated bmDCs. In summary, the data suggests **KappArest™** may act as an effective anti-inflammatory product with little to no risk of toxicity.\(^5\)

KappArest™ supplies a broad array of antioxidants and phytonutrient components, demonstrated to suppress the activation of NF-kappaB and associated kinases, including AP-1. The following ingredients found in **KappArest™** have documented activity in suppressing NF-kappaB.

Curcumin:
KappArest™ has been newly formulated to include 50% **CurcumRx®**, an emulsified Curcuma longa root extract, prepared using a non-chemical process that creates an excellent dual-phase, polar/non-polar emulsion for transport through the lipid membrane. This specialized technology results in increased bioavailability without the use of nanotechnology, including the use of “tweens” and other surfactants that may damage lipid membranes and result in leaky gut. **CurcumRx®** supplies a nutrient-dense turmeric complex that not only contains curcumin, bisdemethoxycurcumin and demethoxycurcumin, it contains more than 200 additional compounds of nutritional interest, including phenolic compounds, sesquiterpenes, sterols, fatty acids, and more. Turmeric and its curcuminoid constituents have been shown to be an effective inhibitor to the activation and release of NF-kappaB.\(^6,7\) In-vitro results suggest that curcumin most likely inhibits cell proliferation, cell-mediated cytotoxicity, and cytokine production by inhibiting NF-kappaB target genes involved in induction of these immune responses.\(^8\)

Boswellia serrata:
In one animal study, acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from the gum resin of Boswellia serrata was found to significantly inhibit active NF-kappaB and suppress the NF-kappaB regulating gene expression.\(^9\) AKBA produced significant decreases in the expression of NF-kappaB regulating genes in tissues.\(^10\) In evaluating its activity, one study demonstrated that Boswellia serrata significantly improved the comfort levels compared to the placebo.\(^11\)

Propolis:
Propolis, a sticky resin honeybees produce by mixing saliva and beeswax, is used as a sealant in the bee hive. It has also traditionally been used in folk medicine as a “drink” to support healthy inflammation pathways. Propolis contains caffeic acid. Both propolis and caffeic acid are strong antioxidants, which have been found to suppress LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-kappaB, without inducing hepatotoxicity.\(^12\)

Green Tea:
The ability of tea polyphenols to prevent NF-kappaB activation has been evaluated in a number of studies. One study demonstrated the antioxidant activity of green tea extract in subjects with nonalcoholic steatohepatitis (NASH) where it was determined that green tea extract improved glutathione status, contributing to the inhibition of the inflammatory response mediated by NF-kappaB.\(^13\) Also, another study suggests that early use of green tea helps regulate NF-kappaB activity in regenerating muscle fibers.\(^14\)

Ginger:
Ginger, a plant with an abundance of phytochemicals yielding antioxidant effects, has been found to support healthy inflammatory pathways. In one study, 1-dydro-[10]-gingerdione (D10G), a constituent of ginger, was found to “mediate the suppression of NF-kappaB-regulated expression of inflammatory genes linked to toll-like receptor (TLR)-mediated innate immunity.”\(^15\) Ginger was also shown to support healthy insulin levels by reducing NF-kappaB.\(^16\)
Rosemary:
Carnosol, a naturally-occurring phytopolyphenol, is the key antioxidant in rosemary studied for its ability to downregulate NF-kappaB. Carnosol decreases high concentrations of nitric oxide (NO) that can be produced by inducible NO synthase (iNOS), and also reduced NF-kappaB subunits translocation and NF-kappaB DNA binding activity. By inhibiting NF-kappaB activation, carnosol suppresses the NO production and iNOS gene expression.\(^{(17)}\)

Celery:
Intake of apigenin (4',5,7-trihydroxyflavone), a plant flavone found in celery blocks phosphorylation and degradation of IkB by inhibiting IKK activation, which in turn led to suppression of NF-kB activation.\(^{(18)}\)

Alpha-Lipoic Acid:
In an animal model, alpha-lipoic acid (ALA), a powerful antioxidant, was found to significantly support cartilage health and function. ALA not only provided strong antioxidant support and increased levels of collagen, it also inhibited the activation of NF-kappaB.\(^{(20)}\)

Trans-Resveratrol:
Resveratrol has also been found to support healthy inflammation pathways through its suppression of NF-kappaB and JAK/STAT signaling pathways. In one study, the effect of resveratrol on the lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 murine macrophages and results confirmed that resveratrol decreased expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6), thus suppressing production of nitric oxide (NO). By modulating NF-kappaB, resveratrol supports healthy inflammatory pathways.\(^{(19)}\)

Phytolens®, a Biotics Research patented extract from lentil, has also demonstrated superior antioxidant properties and displays potent free-radical scavenging ability, resulting in marked benefits. In addition to its antioxidant potency, Phytolens® exhibited great inhibitory effect on both COX-1 and COX-2 activity in one study where it modulated the production of inflammatory mediators by DC2.4 cells.\(^{(5)}\)

Oftentimes, the mechanisms underlying disease processes are a result of a chronic inflammatory state. Much damage can occur when there is an uncontrolled host inflammatory response. KappArest™ provides the effective blend of nutrients proven to downregulate inflammatory pathways, primarily through the inhibition of NF-kappaB.

KappArest™ is available in a 180-count bottle (#7855).
References

16. Honarvar, Niaz Mohammadzadeh. “Effects of Ginger Supplementation on NF-KB in Peripheral Blood Mononuclear Cells in Type 2 Diabetes Mellitus“. Tehran University of Medical Sciences. XXX

To place your order for KappArest™, or for additional information, please contact us below.

BIOTICS RESEARCH CORPORATION
6801 Biotics Research Drive • Rosenberg, TX 77471
biotics@bioticsresearch.com • www.bioticsresearch.com

(800) 231-5777

These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease.