High cholesterol, exists when the amount of cholesterol present in blood is at levels that are deemed unhealthy. Safe levels of cholesterol depends on individual risk factors such as antioxidant status, exercise, stress, tobacco use, genetics and other cardiovascular risk factors such as blood pressure or established coronary heart disease. Although there is some controversy as to what the ideal level of total cholesterol is, most agree that a total cholesterol level above 240 is bad, and a level below 200 is desirable.

Management of high cholesterol should begin with a combination of exercise and a dietary program that reduces saturated fat intake, and to the greatest extent possible, eliminates trans-fats, hydrogenated fats and refined carbohydrates. Additionally, specific nutritional supplements have been found to have a positive impact on cholesterol levels. Lipid-Sirt® supplies specific nutrients which have been shown to modify the production of cholesterol in the liver by reacting with hepatic enzymes, increase cholesterol excretion via the bile, inhibit cholesterol uptake from the intestine, and support increased levels of HDL.

Pantethine, a natural compound, is a stable disulfide form of pantetheine, a precursor of coenzyme A, and is the coenzymatic form of vitamin B5 (pantothenic acid) and cysteamine. Pantethine may increase levels of coenzyme A, which can increase the beta oxidation of fatty acids directly, while its metabolite cysteamine may decrease the hepatic synthesis of cholesterol by inhibiting HMG-CoA reductase. Pantethine has been shown to significantly increase HDL levels in as little as six weeks.

Phytosterols (plant sterol esters) are structurally similar to cholesterol and have been shown to reduce the intestinal absorption of cholesterol by 30 to 40%. Clinical studies have shown that phytosterols can lower total cholesterol by an average of 6 to 10% and LDL cholesterol by 8 to 15%. Phytosterols are a safe, natural, effective intervention for the
Green Tea extract — Epigallocatechin gallate (EGCG) is the most abundant catechin (44-55%) supplied by green tea, and possesses the most potent antioxidative activity of the green tea polyphenols. The potential protective health effects from catechins have been attributed to antioxidant, anti-thrombogenic and anti-inflammatory properties.

EGCG increases endothelial nitric oxide activity. Nitric oxide release from the endothelium results in vasodilation. Impaired vasodilation is associated with the progression of CVD. Widlansky examined the effects of EGCG on endothelial function in patients with coronary artery disease, and found that EGCG improved endothelial function in patients with endothelial dysfunction. EGCG is also an inhibitor of xanthine oxidase, an enzyme that produces the purine uric acid. Xanthine oxidase inhibition has been shown to improve endothelial vasodilation in hypercholesterolemic individuals.

In animal models, green tea catechins have been shown to decrease the solubility of cholesterol in micelles, thereby reducing the intestinal absorption of cholesterol. Delta tocotrienol — Natural vitamin E includes two groups of similar fat soluble compounds - tocopherols and tocotrienols, with each group consisting of four separate isomers: alpha, beta, delta and gamma. While tocopherols have a side tail that allows the molecule to anchor itself in the membrane of cells, the tocotrienol side chain allow the molecule to move freely in and through the membrane allowing it to hunt down free radicals across a much larger area.

Tocotrienols have been shown to inhibit HMG-CoA reductase, the first rate limiting enzyme in the biosynthetic pathway for cholesterol synthesis, with delta and gamma tocotrienol possessing the greatest ability to inhibit cholesterol synthesis. Unlike other HMG-CoA reductase inhibitors, tocotrienols do not inhibit the synthesis of coenzyme Q10. **Phytolens** is a patented extract from the seed coat of lentils — A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthesis by a phosphodiesterase-III OR kinase, CAMK dependant protein kinase and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biological Chemistry 2002 vol, 26, no. 2, 95-102, 2007

Phytolens is an extract from green tea containing at least 400 mg per serving of free phytosterols taken twice a day with meals, for a daily total intake of at least 800 mg, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease. **Green Tea extract** — Epigallocatechin gallate (EGCG) is the most abundant catechin (44-55%) supplied by green tea, and possesses the most potent antioxidative activity of the green tea polyphenols. The potential protective health effects from catechins have been attributed to antioxidant, anti-thrombogenic and anti-inflammatory properties.

EGCG increases endothelial nitric oxide activity. Nitric oxide release from the endothelium results in vasodilation. Impaired vasodilation is associated with the progression of CVD. Widlansky examined the effects of EGCG on endothelial function in patients with coronary artery disease, and found that EGCG improved endothelial function in patients with endothelial dysfunction. EGCG is also an inhibitor of xanthine oxidase, an enzyme that produces the purine uric acid. Xanthine oxidase inhibition has been shown to improve endothelial vasodilation in hypercholesterolemic individuals.

In animal models, green tea catechins have been shown to decrease the solubility of cholesterol in micelles, thereby reducing the intestinal absorption of cholesterol. Delta tocotrienol — Natural vitamin E includes two groups of similar fat soluble compounds - tocopherols and tocotrienols, with each group consisting of four separate isomers: alpha, beta, delta and gamma. While tocopherols have a side tail that allows the molecule to anchor itself in the membrane of cells, the tocotrienol side chain allow the molecule to move freely in and through the membrane allowing it to hunt down free radicals across a much larger area.

Tocotrienols have been shown to inhibit HMG-CoA reductase, the first rate limiting enzyme in the biosynthetic pathway for cholesterol synthesis, with delta and gamma tocotrienol possessing the greatest ability to inhibit cholesterol synthesis. Unlike other HMG-CoA reductase inhibitors, tocotrienols do not inhibit the synthesis of coenzyme Q10.

Delta tocotrienol — Natural vitamin E includes two groups of similar fat soluble compounds - tocopherols and tocotrienols, with each group consisting of four separate isomers: alpha, beta, delta and gamma. While tocopherols have a side tail that allows the molecule to anchor itself in the membrane of cells, the tocotrienol side chain allow the molecule to move freely in and through the membrane allowing it to hunt down free radicals across a much larger area.

Tocotrienols have been shown to inhibit HMG-CoA reductase, the first rate limiting enzyme in the biosynthetic pathway for cholesterol synthesis, with delta and gamma tocotrienol possessing the greatest ability to inhibit cholesterol synthesis. Unlike other HMG-CoA reductase inhibitors, tocotrienols do not inhibit the synthesis of coenzyme Q10.

Phytolens is a patented extract from the seed coat of lentils — A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthesis by a phosphodiesterase-III OR kinase, CAMK dependant protein kinase and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biological Chemistry 2002 vol, 26, no. 2, 95-102, 2007

Phytolens is an extract from green tea containing at least 400 mg per serving of free phytosterols taken twice a day with meals, for a daily total intake of at least 800 mg, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease.